14 research outputs found

    Beyond solid-state lighting: Miniaturization, hybrid integration, and applications og GaN nano- and micro-LEDs

    Get PDF
    Gallium Nitride (GaN) light-emitting-diode (LED) technology has been the revolution in modern lighting. In the last decade, a huge global market of efficient, long-lasting and ubiquitous white light sources has developed around the inception of the Nobel-price-winning blue GaN LEDs. Today GaN optoelectronics is developing beyond lighting, leading to new and innovative devices, e.g. for micro-displays, being the core technology for future augmented reality and visualization, as well as point light sources for optical excitation in communications, imaging, and sensing. This explosion of applications is driven by two main directions: the ability to produce very small GaN LEDs (microLEDs and nanoLEDs) with high efficiency and across large areas, in combination with the possibility to merge optoelectronic-grade GaN microLEDs with silicon microelectronics in a fully hybrid approach. GaN LED technology today is even spreading into the realm of display technology, which has been occupied by organic LED (OLED) and liquid crystal display (LCD) for decades. In this review, the technological transition towards GaN micro- and nanodevices beyond lighting is discussed including an up-to-date overview on the state of the art

    Follow the light - From low-energy defibrillation to multi-site photostimulation

    No full text
    One major cause of death in the industrialized world is sudden cardiac death, which so far can be reliably treated only by applying strong electrical shocks. Developing improved methods, aiming at lowering shock intensity and associated side effects potentially has significant clinical implications. Thus, optogenetic stimulation using structured illumination has been introduced as a promising experimental tool to investigate mechanisms underlying multi-site pacing and to optimize potential low-energy approaches. Furthermore, an objective of this work is to strengthen the application of optogenetic tools for cardiac arrhythmia research, which in turn is expected to improve applicable technologies towards tissue-protective defibrillation

    Advanced Cardiac Rhythm Management by Applying Optogenetic Multi-Site Photostimulation in Murine Hearts

    No full text
    Ventricular tachyarrhythmias are a major cause of mortality and morbidity worldwide. Electrical defibrillation using high-energy electric shocks is currently the only treatment for life-threatening ventricular fibrillation. However, defibrillation may have side-effects, including intolerable pain, tissue damage, and worsening of prognosis, indicating a significant medical need for the development of more gentle cardiac rhythm management strategies. Besides energy-reducing electrical approaches, cardiac optogenetics was introduced as a powerful tool to influence cardiac activity using light-sensitive membrane ion channels and light pulses. In the present study, a robust and valid method for successful photostimulation of Langendorff perfused intact murine hearts will be described based on multi-site pacing applying a 3 x 3 array of micro light-emitting diodes (micro-LED). Simultaneous optical mapping of epicardial membrane voltage waves allows the investigation of the effects of region-specific stimulation and evaluates the newly induced cardiac activity directly on-site. The obtained results show that the efficacy of defibrillation is strongly dependent on the parameters chosen for photostimulation during a cardiac arrhythmia. It will be demonstrated that the illuminated area of the heart plays a crucial role for termination success as well as how the targeted control of cardiac activity during illumination for modifying arrhythmia patterns can be achieved. In summary, this technique provides a possibility to optimize the on-site mechanism manipulation on the way to real-time feedback control of cardiac rhythm and, regarding the region specificity, new approaches in reducing the potential harm to the cardiac system compared to the usage of non-specific electrical shock applications

    Multichannel optogenetic stimulation of the auditory pathway using microfabricated LED cochlear implants in rodents

    No full text
    When hearing fails, electrical cochlear implants (eCIs) provide the brain with auditory information. One important bottleneck of CIs is the poor spectral selectivity that results from the wide current spread from each of the electrode contacts. Optical CIs (oCIs) promise to make better use of the tonotopic order of spiral ganglion neurons (SGNs) inside the cochlea by spatially confined stimulation. Here, we established multichannel oCIs based on light-emitting diode (LED) arrays and used them for optical stimulation of channelrhodopsin (ChR)−expressing SGNs in rodents. Power-efficient blue LED chips were integrated onto microfabricated 15-μm-thin polyimide-based carriers comprising interconnecting lines to address individual LEDs by a stationary or mobile driver circuitry. We extensively characterized the optoelectronic, thermal, and mechanical properties of the oCIs and demonstrated stability over weeks in vitro. We then implanted the oCIs into ChR-expressing rats and gerbils, and characterized multichannel optogenetic SGN stimulation by electrophysiological and behavioral experiments. Improved spectral selectivity was directly demonstrated by recordings from the auditory midbrain. Long-term experiments in deafened ChR-expressing rats and in nontreated control animals demonstrated specificity of optogenetic stimulation. Behavioral studies on animals carrying a wireless oCI sound processor revealed auditory percepts. This study demonstrates hearing restoration with improved spectral selectivity by an LED-based multichannel oCI system

    Translational Neuroelectronics

    No full text
    Neuroelectronic devices are critical for the diagnosis and treatment of neuropsychiatric conditions, and are hypothesized to have many more applications. A wide variety of materials and approaches have been utilized to create innovative neuroelectronic device components, from the tissue interface and acquisition electronics to interconnects and encapsulation. Although traditional materials have a strong track record of stability and safety within a narrow range of use, many of their properties are suboptimal for chronic implantation in body tissue. Material advances harnessed to form all the components required for fully integrated neuroelectronic devices hold promise for improving the long-term efficacy and biocompatibility of these devices within physiological environments. Here, it is aimed to provide a comprehensive overview of materials and devices used in translational neuroelectronics, from acquisition and stimulation interfaces to methods for power delivery and real time processing of neural signals
    corecore